Single-molecule sensing with nanopores
نویسندگان
چکیده
منابع مشابه
Single Molecule Trapping and Sensing Using Dual Nanopores Separated by a Zeptoliter Nanobridge
There is a growing realization, especially within the diagnostic and therapeutic community, that the amount of information enclosed in a single molecule can not only enable a better understanding of biophysical pathways, but also offer exceptional value for early stage biomarker detection of disease onset. To this end, numerous single molecule strategies have been proposed, and in terms of labe...
متن کاملSensing Single Protein Molecules with Solid-State Nanopores
This chapter is focused on the development of experiments and theory of using solid-state nanopores for sensing single protein molecules in their native and unfolded states. Proteins serve diverse roles such as transport carriers, catalysts, molecular motors, cellular structural support, and others that make life possible. Because of these widely differing roles, proteins have an enormously div...
متن کاملSelectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing
The use of nanopore biosensors is set to be extremely important in developing precise single molecule detectors and providing highly sensitive advanced analysis of biological molecules. The precise tailoring of nanopore size is a significant step toward achieving this, as it would allow for a nanopore to be tuned to a corresponding analyte. The work presented here details a methodology for sele...
متن کاملFabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing
We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricat...
متن کاملSingle molecule sensing with carbon nanotube devices
Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. In particular, single-walled carbon nanotubes have the requisite sensitivity to detect single molecule events and sufficient bandwidth to directly monitor single molecule dynamics in real time. Recent measurements have demonstrated this premise by monitoring ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Today
سال: 2015
ISSN: 0031-9228,1945-0699
DOI: 10.1063/pt.3.2881